
1
DBD::Illustra

Version
Version 0.03.

Author and Contact Details
The driver author is Peter Haworth. He can be contacted via thedbi-usersmailing list,
although direct mail topmh@edison.ioppublishing.comis likely to be read more quickly.

Supported Database Versions and Options
The DBD::Illustra module supports Illustra version 3.3.1. Other versions may be sup-
ported.

Connect Syntax
TheDBI->connect() Data Source Name, orDSNmust be in the following format:

dbi:Illustra:dbname

There are no driver-specific attributes for theDBI->connect() method.

Numeric Data Handling
Illustra supports the following numeric data types:

INT1 - 1 byte signed integer
SMALLINT - 2 byte signed integer
INTEGER - 4 byte signed integer
NUMERIC - fixed point number, precision=15, scale=0
NUMERIC(p) - fixed point number, precision=p, scale=0
NUMERIC(p,s) - fixed point number, precision=p, scale=s
DECIMAL - NUMERIC

1

19 May 1999

2 DBD::Illustra

DECIMAL(p) - NUMERIC(p)
DECIMAL(p,s) - NUMERIC(p,s)
REAL - single precision floating point number
DOUBLE PRECISION - double precision floating point number

There appears to be no limit on either the precision or scale of NUMERIC and DECI-
MAL types, except that neither may be negative and the scale may not be less than the
precision.

DBD::Illustra always returns all numbers as strings, so it supports numbers outside the
valid range for Perl numbers.

String Data Handling
Illustra supports the following string data types:

CHAR1 - single character
CHAR(size) - fixed length string
CHARACTER(size) - fixed length string
VARCHAR(size) - variable length string
TEXT - variable length string, up to 8KB
LARGE_TEXT - text, may be greater than 8KB

The 8KB mentioned above isthe size of a page in Illustra. The combined size of all data
in a single row may not exceed the page size. The LARGE_TEXT type uses a large
object held outside the page to store the data.

CHAR and VARCHAR types don’t appear to have a size limit other than the page size.

The CHAR and CHARACTER types are fixed length and blank padded.

Illustra doesn’t seem to notice or care when the 8th bit is set. The 8th bit is preserved as
entered. Unicode UTF-8 strings can be stored but strings with embedded NUL characters
can’t.

Strings can be concatenated using the|| operator.

Date Data Handling
Illustra supports the SQL2 datetime data types and intervals:

DATE - single day resolution, from 1 AD to 9999 AD
TIME - one second resolution, from 00:00:00 to 23:59:61
TIME(p) - p digits of fractional seconds (max 8 digits)
TIMESTAMP - microsecond resolution, from 1 AD to 9999 AD
TIMESTAMP(p) - p digits of fractional seconds (max 8 digits)

The TIME,TIME(p), TIMESTAMP(p) andTIMESTAMP(p) types all accept a ‘‘WITH TIME
ZONE’’ modifier.

19 May 1999

The default output formats for datetime types are:

DATE YYYY-MM-DD
TIME HH:MM:SS[.NNNNNNNN]
TIME WITH TIME ZONE HH:MM:SS[.NNNNNNNN]+HH:MM
TIMESTAMP YYYY-MM-DD HH:MM:SS[.NNNNNNNN]
TIMESTAMP WITH TIME ZONE YYYY-MM-DD HH:MM:SS[.NNNNNNNN]+HH:MM

The default output format cannot be changed. Note that the timezone offsets may be neg-
ative (-HH:MM) as well as positive.

Individual components of dates and times may be extracted using the EXTRACT func-
tion: EXTRACT(field FROM date_value) , wherefield may be one of YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, or TIMEZONE_MINUTE.

The default input formats for all the above types are the same as the output format. Only
those formats are recognized. Literal values must be quoted. All parts of dates and times
must be specified. So two digit years, for example, are not permitted.

To get the correct date and time, the literal string’now’ may be type cast to any of the
above types using a ‘‘::type’’ notation:

’now’::date
’now’::time
’now’::timestamp

Functions are also available:

current_date
current_time
current_time(precision)
current_timestamp
current_timestamp(precision)

For DATE, the two methods are equivalent. However, for TIME and TIMESTAMP,’now’

does not include the timezone, whereas thecurrent_*() functions do. If an integer argu-
ment is passed to thecurrent_*() functions, it indicates the number of digits of frac-
tional seconds to display. The default forcurrent_time() is 0, with a maximum of 8.
The default forcurrent_timestamp() is 6, with a maximum of 8.

Illustra supports the SQL2 datetime data types and intervals:

INTERVAL start[(p1[,p2])] [TO end[(p3)]]

The following interval qualifications are possible:

YEAR, YEAR TO MONTH,
MONTH,
DAY, DAY TO HOUR, DAY TO MINUTE, DAY TO SECOND,
HOUR, HOUR TO MINUTE, HOUR TO SECOND,
MINUTE, MINUTE TO SECOND,

DBD::Illustra 3

19 May 1999

4 DBD::Illustra

SECOND

Wherep1 specifies the number of digits specified in the value, with a maximum of 10 and
a default of 2.p2 andp3 specify the number of digits specified in fractional seconds, with
a maximum of 8 and a default of 0.

Literal interval values may be specified using the following syntax:

INTERVAL value start[(p1,[p2])] [TO end[(p3)]]

e.g.:

INTERVAL ’2’ DAY
INTERVAL ’02:03’ HOUR TO MINUTE
INTERVAL ’12345:67.891’ MINUTE(5) TO SECOND(3)

A full range of operations can be performed on dates and intervals,e.g., datetime-date-
time=interval, datetime+interval=datetime, interval/number=interval.

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

’epoch’::ABSTIME::TIMESTAMP + INTERVAL seconds_since_epoch SECOND(10)

The following SQL expression can be used to go the other way, to convert a database date
time value into a ‘‘seconds since 1-jan-1970 GMT’’ value:

(date_time_field - ’epoch’::ABSTIME::TIMESTAMP) INTERVAL SECOND(10)

No time zone adjustments are perfomed on values of TIME WITH TIME ZONE or
TIMESTAMP WITH TIME ZONE data types. Their time zones are output as they were
entered.

Normal TIME and TIMESTAMP values are treated as being in the current time zone of
the current client. They are converted to GMT when stored in the database and converted
back to the current clients time zone when fetched. For example:

CREATE TABLE tz_demo (loctime TIME, tztime TIME WITH TIME ZONE);

SET TIME ZONE INTERVAL ’3:00’ HOUR TO MINUTE;
INSERT INTO tz_demo VALUES(’12:40:00’,’12:40:00+03:00’);

SELECT * FROM tz_demo;
loctime tztime
12:40:00 12:40:00+03:00

SET TIME ZONE INTERVAL ’0:00’ HOUR TO MINUTE;
SELECT * FROM tz_demo;

loctime tztime
09:40:00 12:40:00+03:00

19 May 1999

LONG/BLOB Data Handling
Illustra supports the following large object types:

LARGE_OBJECT - Binary large object
LARGE_TEXT - Large object masquerading as normal text
EXTERNAL_FILE - Locator for external large binary file

The maximum size of large objects is not documented but is probably 4GB. None of the
types are passed to and from the database as pairs of hex digits.

TheLongReadLenandLongTruncOkattributes are untested as yet.

The bind_param() method is currently unsupported byDBD::Illustra , so these types
must be input as literal string values. Fortunately, Illustra accepts very long SQL state-
ments (over 100KB).

Direct support for large objects is currently under development. LARGE_TEXT fields
may be treated just like any other fields, but LARGE_OBJECT fields and EXTER-
NAL_FILE fields currently need to be accessed with Illustra’sFileToLO() and
LOToFile() SQL functions.

Other Data Handling issues
The DBD::Illustra driver does not currently support thetype_info() method. This is
under development, but Illustra doesn’t generally provide enough information to make
this particularly useful.

Illustra automatically converts dates to strings, strings to dates, and strings to numbers,
but numbers must be explicitly converted to strings:

INSERT INTO foo (num_field, str_field) VALUES (’42’, 42::text)

Transactions, Isolation and Locking
Illustra andDBD::Illustra support transactions. The default transaction isolation level is
Serializable.

Illustra supports all four standard isolation levels: Serializable, Repeatable Read, Read
Commited, and Read Uncommited. The level be changed per-transaction by executing a
SET TRANSACTION ISOLATION LEVEL x statement wherex is the name of the isolation
level required.

The default locking behavior is for readers to block writers.

Rows returned by a SELECT statement can be locked to prevent them from being
changed by another transaction, by including ‘‘LOCK=EXCLUSIVE’’ or
‘‘LOCK=UPDATE’’ in the optimizer hints for a given table:

DBD::Illustra 5

19 May 1999

6 DBD::Illustra

SELECT * FROM xyz USING(LOCK=UPDATE) WHERE xid = ’abc’

Exclusive locks provide less concurrency, but update locks must be upgraded to exclusive
when updates are required. This can cause deadlock if another transaction has acquired a
read lock in the meantime.

There doesn’t seem to be any way to explicitly lock a table other than by issuing a
dummy SELECT statement with a LOCK=EXCLUSIVE hint as above.

No-Table Expression Select Syntax
To select a constant expression (one that doesn’t inv olve data from a database table or
view), you must use ‘‘RETURN’’ rather than ‘‘SELECT’’.

$dbh->prepare("RETURN ’now’::date");

Table Join Syntax
Illustra does not appear to support outer joins, but normal, inner joins are supported with
the standard syntax.

Table and Column Names
The maximum size of table and column names appears to be 212 characters. The first
character must be a letter, but the rest can be any combination of letters, numerals and
underscores (_).

However, if an Illustra identifier is enclosed by double quotation marks ("), it can contain
any combination of characters, including spaces. Double quotes in identifier names must
be escaped with another double quote, e.g,"double""quote" .

Identifiers are stored as entered. All identifiers are case sensitive. National character set
characters can be used if enclosed in double quotation marks.

Case Sensitivity of LIKE Operator
The Illustra LIKE operator is case sensitive.

TheUPPERfunction can be used to force a case insensitive match,e.g., UPPER(name) LIKE

’TOM%’ (although that does prevent Illustra from making use of any index on the name
column to speed up the query).

Row ID

19 May 1999

The Illustra ‘‘row ID’’ pseudocolumn is calledoid. Illustra oid’s look like ‘‘2d52.2001’’.
Oid’s can be treated as a string and used to rapidly (re)select rows.

Automatic Key or Sequence Generation
Illustra does not support automatic key generation such as ‘‘auto increment’’ or ‘‘system
generated’’ keys.

It also doesn’t offer sequence generators.

Automatic Row Numbering and Row Count Limiting
Illustra does not support any way of automatically numbering returned rows.

Parameter Binding
Parameter binding is not supported by Illustra. Emulation by the driver is under develop-
ment.

Stored Procedures
The closest match to stored procedures that Illustra supports is user defined functions.
These may be used just like system defined functions in SELECT or RETURN state-
ments:

$sth = $dbh->prepare("RETURN foo(’bar’)");
$sth->execute;
@result = $sth->fetchrow_array;

Table Metadata
DBD::Illustra supports thetable_info() method. However, since the information
comes from Illustra’s ‘‘tables’’ table,table_info() will only return useful information if
‘‘tables’’ is readable. By default, only the DBA has access to ‘‘tables’’.

The ‘‘columns’’ table contains detailed information about all columns of all the table in
the database, one row per table. However, the same access restrictions described above
for the ‘‘tables’’ table will probably apply.

The ‘‘tables’’ and ‘‘columns’’ tables contain information about indexes as well as normal
tables. Usetables.table_kind=’i’ for index tables (and’t’ for normal tables).

The tables.table_unique field holds an array of column numbers. Each unique con-
straint, including the primary key, is held as a -1 terminated list of column numbers. The
primary key is always the first list, even if it is not present.

DBD::Illustra 7

19 May 1999

8 DBD::Illustra

(no constraints) -> []
primary key(c1,c2) -> [1,2,-1]
primary key(c1,c2),unique(c1,c3) -> [1,2,-1,1,3,-1]
unique(c1,c3) -> [-1,1,3,-1]

These arrays are returned as strings although you can retrieve individual elements instead
using SQL functions.

Driver-specific Attributes and Methods
DBD::Illustra has no significant driver-specific handle attributes or private methods.

Positioned updates and deletes
Illustra supports positioned updates or deletes in cursors that have been explicitly created
and opened FOR UPDATE. For example:

$dbh->do("DECLARE cur1 CURSOR FOR SELECT * FROM tab1 FOR UPDATE");
$dbh->do("OPEN cur1");
$sth = $dbh->prepare("FETCH NEXT FROM cur1");
while ($sth->execute && $row = $sth->fetchrow_arrayref) {

$dbh->do("UPDATE tab1 SET col2=’zyx’ WHERE CURRENT OF cur1");
}

The statements must all occur in the same transaction:

Differences from the DBI Specification
DBD::Illustra does not currently support parameter binding, but does not have any other
significant differences in behavior from the current DBI specification.

URLs to More Database/Driver Specific Information
The Illustra database is being absorbed into the Informix database after Informix bought
the company. Since Illustra is no longer being developed or supported, it’s a bit hard to
find online information.

Concurrent use of Multiple Handles
DBD::Illustra supports 32 concurrent database connections to one or more databases.

It also supports the preparation of a new statement handle while still fetching data from
another statement handle associated with the same database handle. However, only one
statement handle per database handle may be executing concurrently. So you can prepare
a new one but not execute it. This applies to all statements, whether DML or DDL.

19 May 1999

