
1
DBD::ODBC

Version
Version 0.20.

Author and Contact Details
The driver authors are Tim Bunce and Jeff Urlwin. The original work was based upon an
early version of Thomas Wenrich’sDBD::Solid . The authors can be contacted via thedbi-
usersmailing list.

Supported Database Versions and Options
TheDBD::ODBCmodule supports ODBC Version 2.x and 3.x on Unix and Win32. For all
platforms, both an ODBC driver managerandan ODBC driver are required in addition to
theDBD::ODBCmodule.

For Win32, the driver manager is included with the operating system. For Unix and vari-
ants, the iODBC driver manager source is included in theiodbcsrc directory. While
iODBC acts as the driver manager, you still have to find a driver for your platform and
database. Driver providers include:

Intersolv - http://www.intersolv.com
OpenLink - http://www.openlinksw.com

There are others - this is not an exhaustive list.

Connect Syntax

1

19 May 1999

2 DBD::ODBC

TheDBI->connect() Data Source Name, orDSN, has the following forms:

dbi:ODBC:odbc_dsnname
dbi:Oracle:driver=Microsoft Access Driver (*.mdb);dbq=\\server\share\access.mdb

The first example above requires the user to setup an ODBC Data Source Name. A DSN
is simply a name you use to refer to a set of driver specific connection parameters defined
elsewhere. Connection parameters typically include the name of the ODBC driver to use,
the database name, and any required connection details.

Under Win32, the best method of accomplishing this is by using the ODBC32 control
panel applet. Under Unix variants you typically need to edit a text file called.odbc.ini in
your home directory. Refer to your driver manager documentation for more details.

The second connection example above uses the driver specific connection string. By spec-
ifying all the required information, you can bypass the need to use a previously defined
DSN.

There are currently no driver specific attributes for theDBI->connect() method.

Numeric Data Handling
The numeric data handling for ODBC is dependent upon a variety of factors. One of
those critical factors is the end database. For example, Oracle supports different numeric
types than Sybase which, in turn, supports different numeric types than a CSV file. You
will need to read your database documentation for more information.

Unfortunately, the second critical set of factors are the ODBC driver manufacturer and
version of the driver. For example, I have seen great variety in handling of numeric values
between versions of Oracle’s ODBC drivers. What works with one version, sadly, may
not work with even a later version of Oracle’s drivers. You will need to read your ODBC
driver documentation for more information.

The DBI type_info() andtype_info_all() methods provide information about the data
types supported by the database and driver being used.

String Data Handling
As with numeric handling, string data handling is dependent upon the database and
driver. Please see above for more information.

Strings can be concatenated using theCONCAT(s1,s2) SQL function.

Date Data Handling

19 May 1999

As with numeric handling, date data handling is dependent upon the database and driver.
Please see above for more information.

You can use ODBC escape sequences to define a date in a database independent way. For
example, to insert a date of Jan 21, 1998 into a table, you could use:

INSERT INTO table_name (date_field) VALUES ({d ’1998-01-21’});

You can use placeholders within escape sequences instead of literal values. For example:

INSERT INTO table_name (date_field) VALUES ({d ?});

Similar escape sequences are defined for other date time types. Here’s the full set:

{d ’YYYY-MM-DD’} -- date
{t ’HH:MM:SS’} -- time
{ts ’YYYY-MM-DD HH:MM:SS’} -- timestamp
{ts ’YYYY-MM-DD HH:MM:SS.FFFFFFF’} -- timestamp

If you specify a DATE value without a time component, the default time is 00:00:00
(midnight). There is also an interval escape clause which is constructed like this:

{interval [+|-] ’value’ [interval_qualifier]}

For example:

{interval ’200-11’ YEAR(3) TO MONTH}

Please see an ODBC reference guide for more information.

The current date and time on the server can be found by using an ODBC scalar function
escape sequence to call the appropriate function. For example:

INSERT INTO table_name (date_field) VALUES ({fn CURDATE});

The {fn . . . } escape sequence isn’t required if the entire SQL statement conforms to
the level of SQL-92 grammar supported by your ODBC driver.

Other related functions includeCURTIME() , NOW(), CURRENT_DATE(), CURRENT_TIME(),
andCURRENT_TIMESTAMP(). The last three require an ODBC v3 driver.

Other date time related functions include:DAYNAME(), DAYOFMONTH(), DAYOFWEEK(), DAY-

OFYEAR(), EXTRACT(), HOUR(), MINUTE() , MONTH(), MONTHNAME(), SECOND(), WEEK(),
YEAR() .

Basic date time arithmetic can be performed using theTIMESTAMPADD() andTIMESTAM-

PDIFF() functions.

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

DBD::ODBC 3

19 May 1999

4 DBD::ODBC

TIMESTAMPADD(SQL_TSI_SECOND, seconds_since_epoch, {d ’1970-01-01’})

to do the reverse you can use:

TIMESTAMPDIFF(SQL_TSI_SECOND, {d ’1970-01-01’}, date_field)

ODBC itself does not have any support for timezones, though the database to which you
are connected may.

LONG/BLOB Data Handling
Support for LONG/BLOB data types and their maximum lengths are very dependent on
the database to which you are connected.

The LongReadLenand LongTruncOkattributes work as defined. However, the driver
implementations do affect this. Some drivers do not properly indicate that they hav e trun-
cated the data, or they hav e more data available than was actually returned. The
DBD::ODBCtests attempt to determine correct support for this.

No special handling is required for LONG/BLOB data types. They can be treated just like
any other field when fetching or inserting etc.

Other Data Handling issues
TheDBD::ODBCdriver supports thetype_info() method.

Transactions, Isolation and Locking
DBD::ODBCsupports transactions. However, some databases do not.

Supported isolation levels, the default isolation level, and locking behavior are all depen-
dent on the database to which you are connected.

No-Table Expression Select Syntax
This is dependent upon the database to which you are connected. The ODBC standard
SQL does require a table name in SELECT statements. To prevent multiple values being
returned you should use the DISTINCT keyword in the query or, better yet, write the
query to only match one row in a table you know exists, such as a system catalog.

Table Join Syntax

19 May 1999

This is dependent on the database to which you are connected. The ODBC standard SQL
defines the standard syntax for inner joins and an escape sequence to use for outer joins:

{oj outer_join}

whereouter_joinis defined as:

table_name [LEFT | RIGHT | FULL]
OUTER JOIN [table_name | outer_join] ON condition

An outer join request must appear after the FROM clause of a SELECT but before a
WHERE clause, if one exists.

Table and Column Names
The maximum length of table and column names, the case-sensitivity of names, and the
ability to quote them are all dependent on the database to which you are connected.

Case Sensitivity of LIKE Operator
The ODBC standard SQL defines the LIKE operator as case sensitive. Howev er, a few
databases may have case insensitive LIKE operators.

Row ID
The ODBC standard SQL does not define a ‘‘table row id’’ pseudocolumn. However,
some databases do provide one, for example, ROWID in Oracle.

Automatic Key or Sequence Generation
This is dependent on the database to which you are connected.

Automatic Row Numbering and Row Count Limiting
This is dependent on the database to which you are connected.

Parameter Binding
Parameter binding is supported byDBD::ODBC if the underlying ODBC driver driver sup-
ports it. Only the standard? style of placeholders is supported.

TheTYPEattribute to thebind_param() method is supported.

Stored Procedures

DBD::ODBC 5

19 May 1999

6 DBD::ODBC

Stored procedures can be called using the following ODBC escape sequence:

{call procedure1_name}
{call procedure2_name(?, ?)}
{?= call procedure3_name(?, ?)}

The last form would be used to return values from the procedure, butDBD::ODBCcurrently
does not support output parameters.

Table Metadata
DBD::ODBCsupports thetable_info() method.

DBD::ODBC also supports many of the ODBCmetadatafunctions that can be used to dis-
cover information about the tables within a database. These can be accessed as driver-
specific private methods:

SQLGetTypeInfo -- $dbh->func(xxx, GetTypeInfo)
SQLDescribeCol -- $sth->func(colno, DescribeCol)
SQLColAttributes -- $sth->func(xxx, colno, ColAttributes)
SQLGetFunctions -- $dbh->func(xxx, GetFunctions)
SQLColumns -- $dbh->func(catalog, schema, table, column, ’columns’)

The DBI will provide standard methods for all these soon, possibly by the time you read
this.

Driver-specific Attributes and Methods
DBD::ODBChas no driver-specific handle attributes.

In addition to the private methods described in above, theGetInfo() private method can
be used to discover many many details about the driver and database you are using.

Positioned updates and deletes
This is dependent upon the database to which you are connected. Positioned updates and
deletes are supported in ODBC SQL using the ‘‘WHERE CURRENT OF’’ syntax. For
example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

Differences from the DBI Specification
DBD::ODBCdoes not currently support ‘‘out’’ parameter binding. That should be fixed in a
later release.

19 May 1999

URLs to More Database/Driver Specific Information
http://www.openlinksw.com
http://www.intersolv.com
http://www.microsoft.com

Links related to the FreeODBC project:

http://www.openlinksw.com/iodbc
http://www.genix.net/unixODBC

To subscribe to thefreeodbcdevelopment mailing list, send a message tofreeodbc-
request@as220.orgwith just the wordsubscribe in the body of the message.

Concurrent use of Multiple Handles
Most ODBC drivers and databases let you make multiple concurrent database connec-
tions to the same database. A few do not.

Some ODBC drivers and databases, most notably Sybase and SQL Server, do not let you
prepare and execute a new statement handle while still fetching data from another state-
ment handle associated with the same database handle.

DBD::ODBC 7

19 May 1999

