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Abstract

Perl’s history has seen two threading models; one shared-state model now dis-
continued, and one heap-duplicating model with a very inefficient shared state ap-
proach. There is also an Erlang-style threading library on CPAN, threads::lite,
more efficient and scalable but specific in functionality.

A task-oriented parallelisation approach permits parallel operations on data sets
as well as pipeline-based programming. threads::tbb, the core invention of the
paper, uses Intel’s Threading Building Blocks (TBB) along with a system of lazy
cloning for state, and is shown to result in speed-ups for embarassingly parallel tasks
to 8 processor cores or more.

The results are applicable in principle to other languages which are built around
boxed variables and state machine interpreters, such as PHP/Zend or standard
Python.

The cloning logic duplicates core Perl 5 code in intent, the API for which could be
cleaned up to avoid some minor API intrusions. Green fields interpreter approaches
would benefit from a const concept to avoid duplication in the first place, and for
safer operation.

Transformations for task-orientation are similar to those required for event-
oriented programming, with potential to parallelize event frameworks, or for APIs
which span the two styles.
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1 Threading History

1.1 5005threads

The first threading attempt was introduced in unstable Perl 5.004 50 in September
1997 [1]. Recorded in the source history notes as an integration of earlier work, the full
details of this are long lost in the sands of time.

The basic idea was to share all interpreter state by default. It tried to make minimal
use of thread-private space, using a per-thread data structure which various critical
interpreter globals were moved into. This included pointers to the logical stacks (all 5
of them), currently executing instruction, and various per-thread state variables. Much
work was also required for threading the regular expression engine (itself another virtual
machine of sorts).

By July 1998, the work was considered good enough for a production release and were
part of the major new feature bill for 5.005. This threading approach is retrospectively
named 5005threads.

1.2 Interpreter Threads (ithreads)

Along the way, people were wanting to use their Perl programs written for unix, which
tend to use fork(2) a lot, on Windows. Windows does not implement a fork() - only
threading and starting new programs.

To run Perl scripts written for fork()-style multiprocessing, ‘interpreter threads’ were
born, starting in November 1999 in Perl 5.005 63 and released in March 2000 with Perl
5.6.0 as an internal/embedding API. The threads.pm API evolved against this API and
was distributed on CPAN, included with the core in Perl 5.8.0 (July 2002).
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With interpreter threads, it was decided to be better to make everything thread-
private due to problems encountered with insufficient locking with operations with side-
effects. So, interpreter threads use a policy of private state by default, and includes
an API call, Perl clone(), for recursive cloning of an entire interpreter’s data and
execution state.

This API is very expensive in terms of memory; it essentially duplicates the en-
tire heap of the program when a new thread is created, which can easily run into
megabytes. Even on a modern system, starting a thread with a few modules loaded
can take 10’s of milliseconds and obviously increases the anonymous memory size of the
process markedly. For emulating fork(2) on windows, that is fine.

1.3 Deprecation and Retirement of 5005threads

Since its inception, bugs were found regularly in the shared state threading engine -
usually due to a Perl operation affecting a global as a side effect, and this side effect
affecting another thread unexpectedly. The Perl Pumpking, Jarkko Hietaniemi, appar-
ently seemed to give up in desperation, and so declared that the shared state approach
was “considered fundamentally broken” in March 2002 (around perl 5.7.3). There were
at this point two test failures in the official test suite, though a general impression that
“5005threads broke CPAN” remained common knowledge [2].

The last version of Perl 5 to build with shared-state threading was 5.8.7 (May 2005),
it being inadvertently broken on the maint-5.8 series by 5.8.8 (February 2006), though
apparently nobody noticed. During the 5.9.x development series, the -Duse5005threads
compile option was removed. So, Perl 5.10.0 (December 2007) is the first production
release which officially removed the feature.

1.4 threads::lite, a contemporary approach

This feature is still in evolution. It is eventually meant to be used to
selectively clone a subroutine and data reachable from that subroutine in a
separate interpreter and run the cloned subroutine in a separate thread.

Perl Pumpking Gursamy Sarathy, 9 December 1999, talking about the
possible direction of the Perl ithreads API

For a long time, threads.pm along with threads::shared remained the state of the
art for threading in Perl. However, there are serious design issues with threads::shared

and only the most embarrassing of embarrassingly parallel tasks can be successfully
scaled to multi-core systems using it. This is largely down to its shared state implemen-
tation.

Shared state via threads::shared is implemented via a complicated system of inter-
woven “magic” data structures, and a dummy interpreter which “owns” the underlying
data structures. Data is duplicated out of this tapestry of magic data structures as it
is accessed using Perl’s magic hooks. Any access - including read access - to the shared
data is locked by a single mutex. threads::shared could be Perl’s answer to Python’s
Global Interpreter Lock.

Other languages with pure, side-effect free characteristics came to dominate con-
current programming headlines in between. Perl is well known for stealing the best
features from other languages, and so inevitably some tried to bring these concurrency
approaches to Perl.
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threads::lite [3] is a notable implementation, and uses the Perl embedding API,
along with Perl clone() to start a pool of (optionally) automatically restarting threads,
which communicate via thread-safe queues known as “channels”. These are similar to
key primitives available in Erlang [4]; so long as all state is passed via messages in
channels, a high level of concurrency can be obtained.

Unlike threads.pm, it does not use Perl clone() on the master process, instead
starting up a series of its own worker interpreter objects as requested.

The newly created interpreter is then duplicated via Perl clone() to the level of
concurrency requested.

The queues used by threads::lite employ Storable::freeze and Storable::thaw
on all but the most basic of messages to marshall data structures into serialized mes-
sages. This “clean-room” marshalling method ensures that side effects do not propagate
between threads. The work to be done in the worker threads is specified by closures,
which are serialised via the B::Deparse module and compiled in the worker threads on
their start-up.

As this approach has no need for threads::shared, one source of contention while
passing data around is removed. Further contention caused by allocating memory is
likely to start affecting scalability beyond 4 cores or more [5].

2 Task Parallelisation and TBB Concepts

2.1 Tasks vs Threads

The highest throughput approaches to parallelism optimize for keeping all available
processors busy doing useful work, and avoiding contention. The explanation for this
is a logical deduction: as the processor resource is fixed over a given unit of time, then
for a given fixed quantity of workload if all processor cores are constantly working and
never waiting then the task will be finished as quickly as possible.

Thread-oriented approaches such as threads and threads::lite hope to achieve
this by starting lots of threads which can carry out work; letting the operating system
scheduler manage the workload. So long as there are more threads running than there
are available processors, there is usually a high utilisation of available resources.

However, if too many threads are started, per-thread overheads such as stacks or
task switching overhead may overwhelm the advantages gained by parallelism. In the
context of an interpreted language, the memory overhead for a thread may be significant.
Achieving a good balance can be challenging.

Task-oriented Parallelisation such as provided by TBB is an approach that aims
to parcel runnable work into discrete chunks which can then be allocated to threads
independently. The approach minimizes the number of stacks to the number of threads
started globally per-process, typically fixed to the available hardware parallelism. It
also allows task stealing, which shifts the onus of selecting work to be done onto the task
which is able to run; much like members of a smoothly running team will find work to
do and just get on with it.

To ease the parceling of runnable work into tasks, several APIs are provided by TBB
to cater for a range of parallelisable problems.

It is still possible for overheads to swap useful work. All of these APIs are noted
as being most effective when the amount of time spent in an individual task is about
10,000 CPU cycles. Corresponding characteristic figures for the Perl implementation
are arrived at in the results section of this paper.
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2.2 Parallel Data APIs

Parallel Data APIs are for situations where the work to be performed is on a divisible
data set, typically embarassingly parallel problems. Embarassingly parallel problems are
those for which there is no inter-dependence between processing subsets of the problem.

Examples of parallelisable problems for data sets include iteration (parallel for),
iteration with aggregation or reduction (parallel reduce), sorting (parallel sort)
and prefix scans (parallel scan) [7].

In TBB, for each of these APIs, first a body function is defined which works on a
grain of data - the grain size being either pre-determined or scaled at run-time. The
data set must also be indexed by a divisible range - which can be an integer range (as
in iterating over an array of data), or a divisible set, such as the set of keys in a map.

The body function is unique to each API, and data type. This reflects the imple-
mentation of these APIs as C++ templates. C++ templates are types of types, written
as for example std::list<int> - meaning a list (std::list) of integers (int). A dec-
laration such as std::list<int> is actually something of a super-powered macro, the
expansion of which defines concrete C types and functions.

This compares to containers in dynamic languages, which present the appearance
of taking any type of object, but are actually fixed to dealing in a boxed variable type
- called the “thingy” or scalar in Perl, ZVal in PHP/Zend, etc. So, it is not possible
to provide direct access to the generic APIs without a slow and prohibitively difficult
to arrange compilation cycle. Instead, in the Perl bindings, a set of body functions are
provided which allow a given API to be used with a particular calling convention and
boxed variables. The hope is that the use of boxed variables makes real access to the
generic APIs unnecessary.

For example, threads::tbb::for int array func is a Perl object type which calls
parallel for(), using a divisible range of integers (tbb::blocked range<int> in TBB),
a concurrent array for state (in essence, a tbb::concurrent vector<thingy>), and a
static function name for use as a callback. The static function is called with two argu-
ments: a grain-sized range, and a reference to the array. More flexible body function
types are described in the API section, though currently limited to parallel for().

2.3 Pipeline Tasks

The tbb::pipeline API is for problems where a stream of data is processed through
several discrete stages. The first stage of the pipeline produces items to process, like an
iterator, returning NULL when it is finished. Intermediate stages transform items, like
a map function. The last stage need not return anything and is most similar to a simple
function call.

Individual processing stages can be stateful, receiving items one at a time, in order,
in which case they are marked as serial. Or, they can be stateless, such as always
returning the same transformed result for a given input, in which case they are marked
as parallel.

Unlike a map function, the number of items may not multiply along the way.
The arrangement of stages, and multiplicity selection (serial or parallel) of each

stage of the pipeline happens at runtime. Additionally, processes are free to work on
any stage of the pipeline which has work to be done, an advantage over approaches in
which threads (or processes) are started for each stage of the pipeline.

There is also a parallel while function, which a bit like a pipeline with only an
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iterator and a final function call. Unlike the pipeline API, the function call also has
the capability to add new items to the “pipeline” for processing as if the iterator had
returned them. This can be used for instance for genetic algorithms where the result of
assessing/scoring a value may indicate more similar values to be assessed.

The TBB pipeline API is yet to be provided by the threads::tbb library. Difficulties
may arise in that stateful stages of the pipeline may end up thread-bound, and currently
there is no mechanism/call for this in the threads::tbb module.

2.4 Thread-safe Containers

The TBB library provides several concurrent container template classes: tbb::concurrent vector

(an array class), tbb::concurrent hash map and tbb::concurrent queue. This com-
pares with threads::lite which implements only a concurrent queue class.

In a C++ environment, it is not always required to use the concurrent container
API to be thread-safe. However in the threads::tbb Perl implementation, it is the
only way that data from another thread may be accessed.

A system of lazy cloning is used to avoid some of the worst-case performance sce-
narios, to allow the master thread to proceed at “full speed” while worker threads are
naturally throttled by the time taken cloning the data structures as they are accessed.
This is described in detail in the API documentation.

3 API for Perl 5

Here we will talk about potentially using the TBB API with Perl 5. Much of this section
is lifted from the POD of the threads::tbb module and other key modules.

3.1 Initializing TBB

The only threads::tbb class method is the constructor for a new TBB context. This
context is a demand that worker threads have at least the module set specified loaded.
By default, workers should end up with the same module set as ”now”.

use threads::tbb;

my $tbb = threads::tbb->new();

To make this happen, the library takes a copy of the %INC global variable (see %INC

in perlvar) at compile time. It also saves and places a special callback onto the @INC
global (see require in perlfunc) which records all of the modules later loaded by code.

It builds these into two lists which are passed to the worker threads for driving
thread initialization before any work is done. They can be specified manually (as in
threads::lite):

my $tbb = threads::tbb->new(

lib => \@INC, # default: @INC at module BEGIN time

modules => [ qw(Math::BigRat) ],

);

lib

This is an ordered list of paths to prepend to @INC of the worker threads before
any modules are loaded. If any paths already exist on @INC of the worker thread,
they are not duplicated.
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modules

This is an ordered list of modules to ’require’ in the worker thread. The modules in
this list are specified in module-form (eg ”Math::BigRat”). If you want to specify
instead a list of require-form (eg ”Math/BigRat.pm”), this is also possible:

my $tbb = threads::tbb->new( requires => [ "Math/BigRat.pm" ] );

As the list of modules are processed, if any module encountered is already in the
%INC - for instance, if it was loaded as a dependency of another module - then it
is not re-loaded.

The default is to take the %INC saved from the module load, and sort it such that,
eg Moose/Object.pm sorts after Moose.pm, and then after that alphabetically.
After this sorted list, any modules which were seen by require or use are added
to the list in the order they were included in the main program.

Note if you add paths to the beginning of @INC yourself, after use threads::tbb

but before threads::tbb->new(), then threads::tbb will not see them. So, put your
use lib "path" statements before the first use threads::tbb;, or specify required
modules yourself.

3.2 Parallel APIs

These methods are available on body objects which must first be obtained by methods
on the threads::tbb object.

3.2.1 parallel for

parallel for can be used to process a set of data. It is passed a range object, and a
body object. The body object encapsulates state, and the range selects a part of that
state.

You can declare the body object using either of the following methods:

$tbb->for int array func( \@array, "Some::Func" )

This returns a body object, suitable for use with a threads::tbb::blocked int

range, and allows a single threads::tbb::concurrent::array for shared state.
The Some::Func subroutine will be called as:

&{"Some::Func"}( $range, $array_ref );

If it wants to communicate state, it should do so via the $array ref.

$tbb->for int method( $object, "method" )

This will create a body object which calls the ”method” method of $object on
sub-divided ranges, as:

$object->method( $range );

$object will be cloned once for each worker, so can be modified and the results ex-
pected to stay consistent within the lifetime of the parallel for; the calling $object

will see none of them.
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3.3 Concurrent container API

3.3.1 Overview

use threads::tbb;

# ARRAY tie interface:

tie my @array, "threads::tbb::concurrent::array";

$array[0] = $val;

push @array, @items;

# HASH tie interface:

tie my %hash, "threads::tbb::concurrent::hash";

my $value = $hash{key}; # always deep copies

$hash{key} = $value; # careful!

# preferred Hash API: for access:

my $hash = tied %hash; # doesn’t need to be tied really

my $slot = $hash->reader($key);

print $slot->get(); # now safe

my $copy = $slot->clone(); # also fine

undef($slot); # release lock

# for writing:

$slot = (tied %hash)->writer($key);

$value = $slot->get(); # get the value out

$slot->set([$value]); # fine

$copy = $slot->clone(); # $copy now a dup of [$value]

undef($slot); # release lock

# SCALAR tie interface:

# not really concurrent in any way; and every access may copy in to

# the thread which requests it. these wrappers for scalars can be

# passed around via the various containers.

tie my $item, "threads::tbb::concurrent::item";

$item = $val;

print $item;

The threads::tbb::concurrent:: series of modules wrap respective tbb concur-
rent classes. For now there are two main container classes - threads::tbb::concurrent::array
and threads::tbb::concurrent::hash

Note that they are only concurrent if you restrict yourself to the concurrent APIs.
Other ways of accessing the containers may result in programs with race conditions.

Also, the SCALAR interface: threads::tbb::concurrent::item currently has no locking
mechanism, it is currently just an auxilliary way of shunting data between interpreters
using the lazy clone method.

3.3.2 Lazy deep copying

The C++ function clone other sv, from src/lazy clone.cc in the source distribution,
exists to implement selecting cloning of data reachable from one interpreter to the next.
This is implemented in a lazy fashion.
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If entries in the container are requested by a different thread, a deep copy happens
then and there, carried out by the worker thread and not the main thread. So long as
there is no use of the actual state machine of the foreign interpreter, or side effects on
data structures it ”owns”, this should be relatively safe.

Allowed data types

The initial implementation of the deep copying has very much the same limitations as
threads::shared - in that only a certain core set of “pure” perl objects can be passed
through.

XS objects should be safe - as in, not cause segfaults - so long as the package
either defines CLONE SKIP (in which case the objects will be replaced by ”undef” in
the cloned structure - see perlmod), or if they define a CLONE REFCNT inc method.
The CLONE REFCNT inc method should update the objects’ internal idea of how many
references are pointing at it, and return the value 42. If it did neither, then the code
will emit a warning.

As closures are not supported, inside-out objects cannot be passed - and in fact
they’d likely be very inefficient.

Not yet supported are MAD properties or ”strange” forms of magic. Overload is
currently thought to be safe. Filehandles should be relatively trivial to support but are
not implemented yet.

4 Conceptual Findings

4.1 Lazy Deep Copying

Duplicating all data as it is stored into the containers (as in threads::lite and
threads::shared) represents a performance drain in an important case, where the
overheads of the duplication overwhelm the useful work.

With lazy deep cloning, if an interpreter requests a value stored by itself, the stored
value is returned immediately, so if there is a deep complicated structure behind it then
this does not need to be copied.

Without a notion of const in the Perl interpreter, and given that side-effects of
operations may affect the data structure even when it is merely being accessed (for
instance, the hash-internal iterator fields updated by the eachAPI), data must in general
be duplicated if it moves between interpreters. So, when retrieving from a container, if
the slot was stored by another interpreter, then it is cloned by the retrieving interpreter.
This deep cloning is performed by a custom function which is particular about not
modifying the data structure it touches in any way.

The implementation of deep cloning used by the module ends up less restrictive than
the Pure Perl version in threads::shared about valid types of data allowed through,
but more restrictive with magic data structures, which cannot be honoured.

It respects the CLONE SKIP API, requires a reference counting API, but suffers from
a deficiency present in the existing clone API, described later.

The advantage to using Lazy Deep Cloning, over an eager algorithm which uses
a safe, neutral interpreter that never runs anything (as in threads::shared), or to a
collection of Storable::freeze buffers (as in threads::lite) being:

1. reduced memory use; data is only copied to the threads which demand it.
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2. there is no overhead for the thread that started the operation to process data; other
than that taken receiving completed blocks from workers,

It is useful if the worst that happens in this case is that the other thread processes a
relatively small portion of the data, and so only helps reduce processing times by a
small amount, rather than every thread being slowed down all the time.

3. reduced number of overall deep copies. If memory used by a shared interpreter is
used instead,

4. likely faster cloning (clone other sv is implemented in C++ using STL containers,
and does not recurse). This is yet to be proven via benchmarking.

5. You can choose to use an eager algorithm by simply freeze’ing data on the way in.

In other words, if it doesn’t work out, then it can easily be avoided. The documen-
tation refers to allowing this to be selected via an environment variable, though this
is not yet implemented.

The key conceptual finding of this, relevant to designers of interpreters (such as
Parrot or novel runtimes for languages such as Python), is that complications arise,
and duplications are necessary when the interpreter cannot mark data structures as
immutable. If data structures were allowed to be const, or a mixture of const and
concurrency-safe objects, then they could be freely shared between interpreters without
duplication.

4.2 Perl 5 CLONE API for XS module writers

As mentioned above, the clone function delivered honours the CLONE SKIP API, which
permits classes to opt out of being transferred between interpreters. If the class defines
CLONE SKIP as a class function which returns a true value, then any instances of that
class will be replaced by undef during clone [6].

A new API had to be created to deal with correctly destroying object instances shared
between interpreters. This is primarily relevant for XS objects (aka PVMG scalars), in
which the IV (Integer Value) slot of the boxed variable holds a pointer. The structure
at the target of the pointer must be correctly reference counted, or destruction cannot
safely occur. The name CLONE REFCNT inc was given to this operation to represent the
nature of the API and the name for the operation in the Perl 5 C API. Its logical reverse
is not CLONE REFCNT dec, but should be performed during DESTROY.

There is still no sensible instance API to allow XS objects to clone state, which
applies to Perl clone() as well as the objects passed through the cloning function
in this implementation. There is a magic vtable slot, sv dup, which is similar but
not flexible enough to permit use outside of Perl clone(). It is also complicated to
arrange, requiring the magic API. As sv dup() is barely documented, and an alternative
approach outlined in the perlmod documentation, going forward it should be possible to
replace this API with one which permits use both with Perl clone() and this cloning
method.

4.3 Task based vs Event-based programming

The task-oriented model makes an assumption; that each task will be able to perform
useful work when it is run and relinquish the processor to other tasks once it is done.
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For this reason, it is recommended by the TBB documentation that task body func-
tions should generally be non-blocking (that is, not use system calls which must wait for
an external slow operation to complete).

Already this points to a similarity between task-oriented programming and event-
oriented programming, such as provided by POE or Event.pm. These libraries will keep
internal queues of waiting events, though are limited to only a single CPU resource.
Many of the challenges faced by those porting to an event-oriented framework will apply
with the parallel, task-oriented approach of the TBB API.

In both event-based programming and task-based parallelism, large amounts of work
are converted into queues of ideally short duration function calls. Both systems require
re-arranging the program such that the result of a complex computation is handled by
a callback, and not implemented inside a function call.

There are key differences, one is that with TBB you may recursively call another
parallel function, and expect control to return to that block only when the parallel work
is complete.

The similarities point to potential for abstractions which could be useful for run-
ning in both purely event-oriented frameworks and concurrent systems like TBB, or
potentially even allowing event frameworks to run events over multiple cores.

5 Quantitative Findings

As in the first release, only the parallel for API is implemented, this is the one used
for testing.

5.1 parallel for scalability

5.1.1 a task not particularly well suited

An example script in the threads::tbb 0.01 distribution, examples/incredible-threadable.pl,
can be used to demonstrate both the effects of memory allocation overhead, and show
the case for lazy cloning as a strategy.

The problem is prepending a string with ”Ex-”, and appending a small token to men-
tion which thread processed the string. This entirely nonsense task places the emphasis
on the overheads.

This first result demonstrates that a speedup is possible; it does not take into account
the overhead of using the API in the first place, just that the single-threaded use is slower
than the two-threaded use. The input is a 1.5MB, 46k line file, and the machine sports
a 2GHz Core(TM)2 T7200 CPU (with two physical cores and two threads). Median of
five runs.

Threads Processing Time Wallclock Time Master Count Worker Count

1 330ms 0.74s 46332 -
2 274ms 0.67s 31129 15203

The main thread here was able to process data at approximately 2-3 times the
speed of the workers. For this problem, simply copying the data in and out is the
major overhead, and so it helps that the master thread can proceed at ”full steam” for
avoiding the overheads exceeding the return, such that the wall clock time is lower than
the single-threaded case.

Due to the design of the implementation, relatively large runs of data must be used
to see results. This is because the processing time actually includes the amount of
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time it takes to start the worker Perl interpreters and load modules, which on these
systems starts at around 30ms per core, though it will happen in parallel. However in
long-running programs this startup penalty will be amortised.

By running on a larger system with increasing numbers of threads we can see if this
speedup continues as more processors are added, as we would expect. An Amazon EC2
instance with 8 virtual cores was used for the following testing.

Threads Processing Time Master Count Worker Count

1 371ms 71063 -
2 270ms 44414 26649
4 191ms 29147 41916
8 263ms 26651 44412

A scaling issue is evident in these results. Up to 4 cores, the processing time de-
creases, but then takes a sharp decrease.

By re-running the test with the TBB scalable memory allocator, the speed-up con-
tinues to 8 cores:

Threads Processing Time Master Count Worker Count

1 370ms 71063 -
2 263ms 44414 26649
4 155ms 28150 42913
8 125ms 21426 49637

If this were a real program, getting a 3x speed-up from 8x the processing power would
probably not be considered a very good result, but here the purpose is to demonstrate
the need for scalable memory allocation as cores increase.

The actual program demonstrated may not resemble a real-world application, but
the scalability issue is caused by operations all threads must perform to do any work -
allocating and freeing memory. In the Perl interpreter, entering and exiting functions
involves allocating and freeing memory from the heap, not the C stack (a more efficient
operation). Additionally, many Perl opcodes will involve memory allocations, for in-
stance string manipulation. All of these allocation operations may be protected by a
single mutex, making it a heavy contention point.

Furthermore, given that the requirements of memory allocation by the interpreter is
not specific to the implementation, the findings may be relevant to other multi-threaded
uses of Perl.

5.1.2 A synthetic task

In this section, the above test is repeated, but replacing the trivial, do-nothing worker
function with a simple loop that counts a fixed number of times. That is, the inner loop
becomes:

for (my $i = 0; $i < $num; $i++) { }

Where $num is the grain size. The total number of increments is referred to as the
“Set size”.

The purpose is to discover how much work should be performed in the body function
for the program to be scalable.

We follow the procedure in [7] - first, in single-threaded mode, find a grain size
which is around 5-10% extra work. Single runs (if a larger grain size resulted in a slower
time than a previous time, then the result was repeated - this is possibly an artefact of
the paravirtualized test platform)
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Threads Set size Grain Size Time Rate

1 1M 1 5.6s 179 kloops
1 1M 2 2.75s 255 kloops
1 1M 4 1.45s 688 kloops
1 1M 8 762ms 1.31 Mloops
1 1M 16 428ms 2.34 Mloops
1 10M 32 2.55s 3.92 Mloops
1 10M 64 1.91s 5.24 Mloops
1 10M 128 1.49s 6.71 Mloops
1 10M 256 1.08s 9.29 Mloops
1 10M 512 955ms 10.5 Mloops
1 10M 1024 916ms 10.9 Mloops
1 10M 2048 892ms 11.2 Mloops
1 10M 4096 879ms 11.3 Mloops
1 10M 8192 867ms 11.5 Mloops
1 10M 16384 859ms 11.6 Mloops
1 10M 32768 859ms 11.6 Mloops
1 10M 65536 859ms 11.6 Mloops

This initial testing indicates that a grain size of 512 or greater should have only a
1̃0% impact on uni-processor, or around 2048 for a stricter 5% allowance.

So, now we run with a number of threads and grain sizes in the 512-2048 range;
average of best three runs out of five (to counteract effects of paravirtualized platform):

Threads Set size Grain Size Time Rate Efficiency

1 16Mi 512 1.71s 9.8 Mloops -
2 16Mi 512 870ms 19.3 Mloops 98.3%
3 16Mi 512 682ms 24.6 Mloops 83.5%
4 16Mi 512 520ms 32.2 Mloops 82.2%
6 16Mi 512 426ms 39.3 Mloops 66.8%
8 16Mi 512 388ms 43.2 Mloops 55.1%

1 16Mi 1024 1.54s 10.9 Mloops -
4 16Mi 1024 464ms 36.1 Mloops 83.1%
8 16Mi 1024 361ms 46.5 Mloops 53.4%

1 16Mi 2048 1.48s 11.3 Mloops -
4 16Mi 2048 440ms 38.1 Mloops 84.3%
8 16Mi 2048 459ms 36.5 Mloops 40.4%

1 64Mi 2048 5.98s 11.2 Mloops -
2 64Mi 2048 3.04s 22.1 Mloops 98.4%
4 64Mi 2048 1.78s 37.6 Mloops 83.9%
8 64Mi 2048 1.01s 66.4 Mloops 73.9%

The above results were all obtained without the scalable memory allocator.
The last column, “Efficiency”, represents the throughput improvement compared to

the extra number of CPUs which were made available. It is simply calculated as the
time for 1 Thread execution for the given Set size and grain size, divided by the time
for this run, divided by the number of threads.

With the scalable allocator, the efficiency can be even higher:
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Threads Set size Grain Size Time Rate Efficiency

1 16Mi 512 1.62s 10.4 Mloops -
2 16Mi 512 878ms 19.1 Mloops 92.3%
3 16Mi 512 584ms 28.7 Mloops 92.5%
4 16Mi 512 455ms 36.9 Mloops 89.0%
6 16Mi 512 338ms 49.6 Mloops 79.9%
8 16Mi 512 273ms 61.5 Mloops 74.1%

1 16Mi 1024 1.53s 11.0 Mloops -
2 16Mi 1024 826ms 20.3 Mloops 92.6%
4 16Mi 1024 426ms 39.4 Mloops 89.8%
8 16Mi 1024 258ms 65.0 Mloops 74.1%

1 16Mi 2048 1.50s 11.2 Mloops -
4 16Mi 2048 425ms 39.5 Mloops 88.2%
8 16Mi 2048 424ms 39.6 Mloops 44.2%

1 64Mi 2048 5.98s 11.2 Mloops -
2 64Mi 2048 3.09s 21.7 Mloops 96.8%
4 64Mi 2048 1.58s 42.5 Mloops 94.6%
8 64Mi 2048 854ms 78.6 Mloops 87.5%

As expected, the most impressive results are with the largest grain size, the largest
input set and the scalable memory allocator.

This data point yielded the highest overall rate and efficiency. 87.5% scalability over
8 processors is scaling to 7 processors out of 8 and a good preliminary result, even for a
synthetic test, especially given the paravirtualized platform.

Improving this further would likely require use of a dedicated highly parallel plat-
form, as well as eliminating platform inefficiencies such as kernel-level issues [9].

There are some outlying data points, even with the “average of three best runs over
5” paravirtualization compensation. So the results should be read into with caution.

Nonetheless we should be able to see the overhead as the grain size gets smaller and
smaller, confirming 512-2048 as reasonable runloop iteration counts for Perl programs.

Threads Set size Grain Size Time Rate Efficiency

1 16Mi 256 1.80s 9.4 Mloops -
4 16Mi 256 520ms 32.3 Mloops 86.2%
8 16Mi 256 277ms 60.6 Mloops 80.8%

1 16Mi 128 2.13s 7.9 Mloops -
4 16Mi 128 616ms 27.3 Mloops 86.4%
8 16Mi 128 350ms 47.9 Mloops 76.1%

While the relative speedup is still in the 75% range for 8 cores, the overall rate is so
far diminished by that point that in a real sense the overheads are still swamping useful
work.

5.1.3 A practical application

In this section, a real-world program is taken and the parallelism retro-fitted. The
program chosen was album, a web gallery program. This program spends most of its
time resizing images. For the sake of the test, the convert(1) program was recompiled
to not use OpenMP. This of course makes this result highly synthetic, though the script
itself is real-world.

The system was another Amazon EC2 xlarge instance, and the gallery being thumb-
nailed was approximately 118MB in size. All figures average of five runs.
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Threads User Time Real Time System Time

1 43.0s 49.3s 4.7s
8 46.9s 8.8s 8.8s

The speedup for the whole program run is not 8 times on an 8-way system, but
the image resizing phase of the program operation is visibly much faster; the overall
speed-up is 5.6x. Not bad for changing 43 lines in a script almost 8,000 lines long!

6 Closing notes

Firstly, it should be emphasised that retrofitting threading to an interpreter is a task
not to be taken on lightly. It must be remembered that an interpreter is a form of
virtual machine, and that its primary task is to move the state of the virtual machine
forward. It is only natural that the action taken from each state is intrinsically linked
to the previous state. Unless the language being interpreted provides some concurrent
APIs, there will be nothing for worker threads to do.

Secondly, while the TBB API has provided convenient scalable algorithms, the me-
chanics of connecting those to actual interpreter instances, and dealing with shared
state are fundamentally challenging. The work here is in very many ways standing
on the shoulders of the pumpkings that have worked on Perl threading over the many
years of its life. It has been carried out with ready access to existing implementations,
and with extensive reference to source code history and comprehensive internals API
documentation.

It is tempting to use the results of this to infer that a similar effort could be under-
taken against the PHP/Zend interpreter. Starting slave interpreters in threads could
be integrated using documented APIs as a SAPI interface, and mechanisms for pass-
ing data around implemented corresponding to the findings in this effort. However the
very real practical obstacles that will arise as a result of there having been no serious
effort from the core team to implement any kind of threading, and the lack of internals
documentation, will make this a task that very few will be able to take on.

Thirdly, there may be serious mismatches in expectations of a library written for
one language and what the other language is providing. There is no compelling reason
that interpreters should not be able to share pointers to shared state, but because
the expectation is violated, much copying of data is required and this places another
overhead that makes scaling programs difficult.

On the positive side of things, there are some good results demonstrated for tasks
which suit parallelisation, where the API is available. While some potential pitfalls
have been identified, largely speaking binding new parts of the TBB API to Perl has
progressed successfully. So, the further development of this module to cover the rest of
the TBB core APIs - reduce, sorting, pipeline programs, and the raw task API - is now
a relatively known quantity.
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